TEL: 040-2840 7858 0   |   MO-DO 9-18 UHR + FR 9-17 UHR
Unser Angebot richtet sich ausschließlich an gewerbliche Kunden und Freiberufler.

PRODUKT- und HERSTELLER-SUCHE

Hersteller

Produktgruppen

Sie erreichen uns von
Montag bis Donnerstag 9-18 Uhr
und Freitag 9-17 Uhr.

BERATUNG | BESTELLUNG
Tel: 040-2840 7858 0
E-Mail: info@picturetools.de

BERATUNG | SCHULUNG | DEMOS
picturetools GmbH & Co. KG
Großer Burstah 36-38, 2. Etage
20457 Hamburg-City

AB 250€ VERSANDKOSTENFREIE LIEFERUNG IN DEUTSCHLAND.

Blackmagic Universal Videohub

Bitte in der Dropdown Liste die Kategorie wählen.

Blackmagic Design Universal Videohub 288 Crosspoint

Bauen Sie sich Ihren eigenen Router mit SDI- oder Glasfaser-Schnittstellen in einer Größe von bis zu 288 x 288 Anschlüssen. Zuverlässigkeit durch Redundanz, flexibel erweiterbar durch Module.
Blackmagic Universal Videohub
BM-VHUBUV-288XP
Preis: 7.656,75 €   7.197,00 €
(8.564,43 € inkl. MwSt.)
8564,43
Lieferzeit: 3 Tage
 

Fragen zum Produkt?

Senden Sie uns eine Nachricht:

Blackmagic Design Universal Videohub

Wer in seinem Studio die Grenzen der Smart Videohubs von Blackmagic Design auslotet oder von vornherein Größeres plant, der landet unweigerlich bei der Universal-Studiohub-Serie desselben Herstellers. Ausgelegt für den Einsatz in größeren Studios, Schaltzentralen und bei umfangreichen Events, sind die Universal Videohubs skalierbare Knotenpunkte, an denen alle Audio/Video-Quellen und Senken einer Installation zusammen kommen.

 

Universal Videohubs sind - wie die Smart Videohubs auch - in erster Linie Kreuzschienen bzw. Router. Insofern Sie an dieser Stelle auf die Grundlagen verwiesen, welche bei uns im Bereich der Smart Videohubs nachzulesen sind - der allergrößte Teil der dort gemachten, grundlegenden Aussagen, trifft auch auf die Universal Videohubs zu.


Modularer Aufbau wächst mit den Bedürfnissen

Universal Videohubs sind komplett modular aufgebaut und in zwei prinzipiell unterschiedlichen Größen verfügbar: der “kleine” Universal Videohub hat maximal 72x72, die große Variante 288x288 Kreuzungspunkte (Crosspoints). (ACHTUNG: Wie in obigem Link beschrieben, addieren sich diese Zahlen, sie multiplizieren sich nicht).  Die für ein funktionsfähiges Setup mindestens miteinander zu kombinierenden Komponenten sind

 

  • ein Gehäuse für 72 oder 288 Kreuzungspunkte, bei Blackmagic Design und hiernach auch im Folgenden “Mainframe” genannt.

  • eine Schaltmatrix in der passenden Größe (Crosspoint)

  • ein - oder bei gewünschter redundanz in der Stromversorgung des großen Universal Videohub auch zwei - Netzteil(e)

  • Ein oder mehrere SDI-Interfaces (optisch oder koaxial) in Form von Steckkarten

  • Ein oder mehrere Master Control oder Smart Control zur Steuerung der Universal Videohubs. Diese sind identisch mit den in der Produktkategorie “Smart Videohubs” vorgestellten Geräten.

  • Optional können die SDI-Interfaces auch noch mit Kabeln zur Steuerung angeschlossener SDI-Quellen via RS-422 versehen werden.


Unterstützte Videoformate

Die gesamte Universal Videohub-Architektur ist ausgelegt für die Nutzung von SDI-Signalen mit 3 Gbit/s. Alle Komponenten unterstützen also den Umgang mit folgenden Videoformaten:

 

SD

  • 625/25 PAL and 525/29.97 NTSC.

HD

  • 720p23.98, 24, 25, 29.97, 30, 50, 59.94, 60.

  • 1080p23.98, 24, 25, 29.97, 30, 50, 59.94, 60.

  • 1080PsF23.98, 24, 25, 29.97, 30.

  • 1080i50, 59.94, 60.

2K

  • 2048 x 1556p23.98, 24, 25.

 

...und das alles bei 4:2:2 oder 4:4:4 Sampling mit durchgängigen 10 Bit Farbauflösung.


SDI-Interfaces - modular und so viel gerade gebraucht werden

Jedes der eingesteckten SDI-Interfaces, ganz gleich ob optisch oder koaxial, bietet vier SDI-Eingänge und vier SDI-Ausgänge. Insgesamt 18 solcher Karten können in den “kleinen” Universal Videohub gesteckt werden, der damit 18x4=72 Eingänge und 18x4=72 Ausgänge hat. Ergo passen in den “großen” 288er-Mainframe wieviel Karten? Richtig! 288/4, derer also 72.

Bei der Bestückung der Mainframes mit Karten gilt übrigens das “mix & match”-Prinzip, will sagen: Diese können frei miteinander kombinidert werden. Optische Eingänge können auf ein oder mehrere optische und/oder koaxiale Ausgänge geroutet werden - koaxiale Eingänge können auf ein oder mehrere koaxiale und/oder optische Ausgänge geroutet werden. Alle Karten sind zudem im laufenden Betrieb einzustecken bzw. zu entnehmen (hot-swapable, siehe https://en.wikipedia.org/wiki/Hot_swapping), so daß der Universal Hub auch im Rahmen von Auf- oder Umrüstungen weiter in Betrieb bleibt.


Stromversorgung

Auch die Stromversorgung eines Universal Videohub ist Modular. Entweder kommt die 450-Watt-Powercard zum Einsatz, die mit drei Anschlüssen für externe Netzteile genug Strom für bis zu 18 Karten, also einen voll bestückten 72er-Mainframe bietet. Der große 288er Mainframe wird über ein oder mehrere 800-Watt-Netzteile versorgt, die in einem jeweils eigenen, 1 HE hohen 19”-Gehäuse untergebracht sind und ebenfalls über je eine Power-Card mit dem Mainframe verbunden werden. Somit lässt sich der große Universal Videohub auch mit redundanter Stromversorgung ausstatten, die trotz eventuellen Ausfalls eines Netzteils den Betrieb aufrecht erhält.


Aufrüstbarkeit

Sollte im Laufe der Zeit und beim Einsatz des Universal Videohub 72 die Grenze der Ausbaufähigkeit erreicht werden, steht im übrigen nur die Anschaffung eines neuen Mainframe nebst passendem Crosspoint und ggf. anderer Powercards an. Alle bis dato eingesetzten SDI-Interface-Karten (optisch wie koaxial) können in den neuen Mainframe umgesteckt und weiter verwendet werden.


Betrieb und Konfiguration

Der Betrieb, die Steuerung und die Konfigurationsmöglichkeiten der Universal Videohubs via Software, iPad, Smart Control oder Master Control entsprechen weitestgehend den Möglichkeiten der Smart Videohubs. (siehe auch den entsprechenden Teil auf unserer Webseite dazu)


Beratung

Sollten Sie den Kauf eines Universal Videohubs erwägen oder entsprechende Planungen hegen, möchten wir Sie bitten, sich mit uns in Verbindung zu setzen. Der Universal Videohub, noch viel mehr aber sein Einsatz, sind ein äußerst komplexes Umfeld, dass in den meisten Fällen das Rückgrat eines Unternehmens darstellen dürfte. Wir helfen Ihnen bei der Planung und der Zusammenstellng der Komponenten ebeso, wie bei deren Konfiguration und Inbetriebnahme - fordern Sie uns, wir sind gerne für Sie da.

 

Videohub 72 Mainframe

Das Rackgehäuse lässt sich um bis zu 18 BNC-SDI- oder Glasfaser-SDI-Schnittstellen erweitern und mit einer 72 x 72 Koppelpunktkarte und einer Netzteilkarte aufrüsten. Umfasst entnehmbaren Lüftereinsatz und Lüfter.

 

 

Universal Videohub 72 Crosspoint

Unterstützt bis zu 72x72 SDI und MAZ-Steuerung, Ethernet-Netzwerk und serielle Kreuzschienen-Steuerung, Genlock und Alarmanzeigen. Kompatibel zu den Gehäusen der Universal Hub 72 und 288.

 

 

 

 

Videohub 288 Mainframe

Das Rackgehäuse lässt sich um bis zu 72 BNC-SDI- oder Glasfaser-SDI-Schnittstellen erweitern und mit einer 72 x 72 oder zwei 288 x 288 Koppelpunktkarten und mit bis zu zwei Netzteilkarten aufrüsten. Erweitern Sie die Kreuzschiene in der Sparvariante mit einer einzelnen Koppelpunktkarte oder realisieren Sie komplette Redundanz und rüsten sie mit dualen Koppelpunkt- und Netzteilkarten aus. Umfasst entnehmbaren Lüftereinsatz und Lüfter.

 

 

Universal Videohub 288 Crosspoint

Unterstützt bis zu 288x288 SDI und MAZ-Steuerung, Ethernet-Netzwerk und serielle Kreuzschienen-Steuerung, Genlock und Alarmanschlüsse und -anzeigen. Kompatibel zum Gehäuse des Universal Hub 288.

 

 

Universal Videohub 450W Power Card

Lässt Sie nach Bedarf bis zu 3 externe 12-V-Netzteile anschließen (separat erhältlich). 3 Netzteile bringen genug Leistung für 72 x 72 BNC SDI oder Optical Fiber!

 

 

Universal Videohub Power Supply

Erforderlich, wenn Sie die Kreuzschiene komplett mit gemischten Lichtwellenleiter SDI und BNC SDI-Karten ausbauen. Enthält Netzteilkarten, Kabel und eine 1HE-Stromversorgung.

 

 

Universal Videohub Optical Fiber Interface

Enthält 4 Ein- und 4 Ausgänge sowie 4 MAZ-Steuerungen, Reclocking und SD, HD sowie 3 Gb/s. 1310 nm Lasertreiber und Empfänger bis zu 25 km bei 3 Gb/s.

 

 

 

SFPs:

Im Lieferumfang sind vier SFPs mit Duplex- bzw. LC/LC-Buchsen enthalten.

(Siehe dazu auch der Reiter "Grundlagen zur optischen (LWL) Verkabelung")

Universal Videohub SDI Interface

Enthält 4 SDI Eingänge und 4 SDI Ausgänge, sowie 4 MAZ-Steuerungen. Enthält komplettes Re-Clocking und automatische Umschaltung zwischen SD, HD und 3 Gb/s SDI.

 

 

Videohub Smart Control

Der Videohub Smart Control ist ein Zusatzgerät, das per Netzwerk mit einem existierenden Universal Videohub verbunden sein muss. Oftmals setzt man das Gerät dazu ein, um auch direkt am Arbeitsplatz per Knopfdruck verschiedene Quellen auswählen zu können - beispielsweise, um diese am Videovorschaumonitor des Arbeitsplatzes abzurufen, obwohl der Universal Videohub selbst in einem ganz anderen Raum steht.

Sämtliche Tasten können als Quelle, Senke oder "Take"-Button frei belegt werden. Zudem ist es möglich, einfache Makros zu definieren, die auf einen Tastendruck mehrere Quellen und Senken gleichzeitig schalten. Bis zu 6 Schaltungen sind so mit einem einzigen Tastendruck zu erledigen.

Diese Makro-Funktionalität eröffnet sich erst durch den Einsatz des Videohub Smart Control - im Auslieferungszustand besitzen Smart Videohubs keine Möglichkeit, Makros zu nutzen.

Wie auch bei den Smart Videohubs sind alle Tastenkappen des Videohub Smart Control abnehmbar, um diese mit eigenen Beschriftungen zu versehen.

Eine Kaskadierung/Kombination mehrerer Videohub Smart Controls mit einem oder mehreren Smart Videohubs ist möglich.

         

 


 

Videohub Master Control

Der Videohub Master Control ist dem Videohub Smart Control sehr ähnlich, bietet jedoch keine Makro-Funktionalität. Stattdessen kann die ausgewählte Videoquelle auf einem kleinen Display betrachtet werden. Außerdem können mehr Quellen/Senken angewählt werden, als dafür Knöpfe auf dem Gerät vorhanden sind - die Auswahl dazu erfolgt dazu mittels des Drehknopfes.

Eine Kaskadierung/Kombination mehrerer Videohub Master Controls mit einem oder mehreren Smart Videohubs ist möglich.

 
 
 

 

 

Was Anfang des Jahrtausends noch Einsatzszenarien in Grosskonzernen vorbehalten war, hält mit rasanter Geschwindigkeit Einzug in der IT- und Medientechnik mittelständischer und kleiner Unternehmen, ja gar bei Ein-Personen-Gesellschaften: Die Verbindung verschiedener Geräte untereinander mittels optischer Kabel, auch als Lichtwellenreiter (LWL), Glasfaser oder Fibre-Optics-Cabling bekannt.

Gerade weil  dieser gesamte Themenbereich schier unerschöpflich behandelt werden könnte, möchten wir uns an dieser Stelle auf die Vermittlung jener grundlegenden Informationen konzentrieren, die für den (oder die :-) typische(n) Medienschaffende(n) in der Praxis relevant sind. Dabei werden die Bereiche

  • Vor- und Nachteile optischer Verkabelungen
  • Typen von LWL-Fasern
  • Mediakonverter
  • Stecker-Typen für LWL-Fasern
  • Mini-GBICs/SFP-Module vs. Direct Attached
  • Glasfaser-Verbindungstypen
  • Glasfaser-Kabeltypen

behandelt. Insofern mögen LWL-Spezialisten nachsehen, wenn im Folgenden das ein oder andere als Einschränkung oder „maximale Spezifikation“ vorgegeben wird - das bezieht sich nur auf die typischen Einsatzgebiete der IT-basierten Visualisierungsbranche und den dort verbreiteten LWL-Technologien. Wer tiefer in das Thema eintauchen möchte, dem sei als Startpunkt https://de.wikipedia.org/wiki/Lichtwellenleiter empfohlen.


Vor- und Nachteile optischer Verkabelungen

Im Vergleich zu kupferbasierten, elektrischen Kabelführungen haben optische Kabel einige ganz erhebliche Vorteile. Da wären zum einen die Möglichkeit, deutlich längere Kabelwege zu realisieren - wir reden in unserer Branche von mehreren hundert Metern bis zu 20 Kilometern Kabellänge, die ohne Verstärker oder Leistungsverlust übertragen werden können.

Zum anderen sind über LWL-Kabel erheblich (!) höhere Datenraten bzw. Bandbreiten möglich.

In der Kombination ergibt sich daraus, um nur ein Beispiel zu nennen, folgendes: Möchten Sie ein 6-GBit/s-HDSDI-Signal per Kupferkabel übertragen, dürfte selbst bei den besten Kupferkabeln am Markt nach spätestens 50 Metern „Schluss“ sein - dann muss ein Verstärker (unter dem Namen „Distribution-Amplifier“ angebotene Geräte) zwischengeschaltet werden. Das Hauptproblem daran ist: Ein solcher Verstärker benötigt eine eigene Stromquelle, die demnach auch alle 50m vorhanden sein muss.

Setzt man das Videosignal jedoch auf einen optischen Übertragungsweg um, sind - traraaaa - 20 Kilometer (!) lange Kabel und mehr kein Problem; verlustfrei, verzögerungsfrei, ohne Verstärker, einfach so!

Steigert man in diesem Beispiel die Datenrate, wird der Vorteil noch deutlicher:  Moderne RAID-System liefern heutzutage ganz schnell Datenraten jenseits 2 GByte/s - das sind immerhin 16 GBit/s. Diese per Kupferkabel zu übertragen funktioniert meist nur wenige Meter (siehe zu dem Thema der Abschnitt „Direct Attached“ weiter unten. Wenn nun aber die Workstation bzw der Server und das RAID auch nur in zwei direkt nebeneinander stehenden 19“-Schränken untergebracht sind. Der Server oben, das RAID unten - schon dann reichen Kupferkabel für die gewünschten Bandbreiten nicht mehr aus, ist ein solches Kabel doch schnell fünf Meter oder länger. Und Verbindungen zwischen Server und Workstation sind dann schnell mehrere Dutzend Meter lang.

Last but not least unterliegen optische Kabel keinen externen Interferenzen und sind   - für denjenigen, dem das wichtig erscheint - zu Spionagezwecken erheblich schwerer abzuhören, als Kupferkabel.

 

Nun ist nicht überall Sonnenschein, daher haben LWL-Verkabelungen selbstverständlich auch Nachteile: LWL-Kabel, zumindest einfache Patch-Kabel (siehe hierzu den unten stehenden Abschnitt  „Glasfaser-Kabeltypen“) sind empfindlicher als Kupferkabel. Zwar „brechen“ moderne LW-Fasern heutzutage nicht mehr so leicht wie in den 90ern (Biegeradien von wenigen cm sind heutzutage für ein LWL-Kabel kein Problem mehr), aber gerade die verbreiteten, platzsparenden LC/LC-Verbinder (siehe „Stecker-Typen für LWL-Fasern“ weiter unten) sind aufgrund ihrer filigranen Struktur deutlich empfindlicher als, z.B. ein SFF-8088-Verbinder oder ein SDI-Kabel.

Ausserdem sind zwar die LWL-Kabel selbst (bezogen auf vergleichbare Längen) gar nicht mehr so viel teurer als hochwertige Kupferkabel, aber dennoch sind heutzutage die Mehrzahl der anzuschliessenden Geräte oft nur mit normalen Kupferkabel-Anschlüssen versehen - es Bedarf also Kosten verursachender Konverter (welche zuhauf von Anbietern wie AJA oder Blackmagic Design angeboten werden). Deren Kosten muss man nun, z.B. bei optischen Videostrecken jenseits der 50 oder 100 Meter Länge, wieder in Relation zu den eingesparten Signalverstärkern setzen. Schlussendlich, das sei aus der Praxis mit zahlreichen Kundenkontakten berichtet, liegen die Zusatzkosten für LWL-Verkabelungen heutzutage oftmals deutlich unter dem, was Kunden befürchten, dafür investieren zu müssen.


Typen von LWL-Fasern / Kabeln

Wenngleich es auch Dutzende verschiedener und in Sachen Übertragung keineswegs kompatible Glasfaserkabel auf dem Markt gibt, so reduziert sich die im IT- und Medienbereich verwendeten Auswahl doch auf zwei Typen: Multimode- und Singlemode-Kabel (letztere werden auch Monomode-Kabel genannt). Technisch gesehen unterscheiden sich diese - vereinfacht gesagt - durch die Art des Materials, aus der die Glasfaser besteht und im Durchmesser der Faser selbst. Multimode-Fasern haben einen Durchmesser  von 50 bis 100 Mikrometern (µm), Singlemode-Fasern einen von 8 bis 10 µm. Der Grund weshalb es überhaupt verschiedene Kabel gibt liegt primär in den Kosten: In Multimode-Kabeln wird ein Laserlicht mit einer Wellenlänge von 850 Nanometern (nm) genutzt - das kann preiswert von speziellen LEDs erzeugt werden. Das in Singlemode-Kabeln verwendete Laserlicht hat meist eine Wellenlänge von 1310 nm, die entsprechenden, das Laserlidht erzeugenden Bauteile sind hier etwas teurer. Im Detail wird das übrigens hier https://en.wikipedia.org/wiki/Multi-mode_optical_fiber bzw. hier https://en.wikipedia.org/wiki/Single-mode_optical_fiber sehr gut erläutert.

 

Links die Darstellung des Strahlenverlaufs in einem Singlemode-Kabel, rechts davon ein Multimode-Kabel.

 

Multimode-Kabel werden hauptsächlich zur Verkabelung innerhalb eines oder benachbarter Räume verwendet. Je nach dem, welche Bandbreite auf dem Kabel „gefahren“ wird, ist auch die maximale Länge eines Multimode-Kabels unterschiedlich: etwa 2 Kilometer bei 100 MBit/s, etwa 1000 Meter bei 1 GBit/s und etwa 550 Meter bei 10 GBit/s.

Singlemode-Kabel kommen immer öfter in der Vernetzung verschiedener Gebäude-Stockwerke zu Einsatz - zum Beispiel dürfte wohl im Kern jedes, in den letzten Jahren erbauten Hochhauses eine Vielzahl von Singlemode-Kabeln verlegt worden sein, die in jedem Stockwerk Abzweigungen haben und zum zentralen „Maschinen-Raum“ des Hauses führen.

Und jetzt kommt das Wichtigste: Bei 10 GBit/s kann ein typisches Singlemode-Kabel mehrere tausend (!) Kilometer lang sein. Und selbst bei einer Datenrate von 40 GBit/s sind noch einige hundert Kilometer lange Kabel möglich. Da dies jedoch in der Praxis „unserer“ Industrie selten notwendig ist und für derartige Distanzen spezielle Verstärker benötigt werden, beschränken sich die meisten Hersteller von Produkten im Medien/IT-Bereich auf die Spezifikation von maximal 20km Kabellänge - so zum Beispiel die Hersteller Blackmagic Design und AJA, die entsprechende Spezifikationen für ihre Konverter herausgegeben haben.

Übrigens: Auch wenn zum Beispiel alle Konverter von Blackmagic für den Einsatz mit Singlemode-Kabel spezifiziert sind, so kann man in der Praxis durchaus auch Multimode-Kabel verwenden. Das schränkt die Länge erheblich ein, funktioniert aber meistens (was keinesfalls bedeutet, das wir eine solche Verkabelung auch nur ansatzweise empfehlen möchten!).


Mediakonverter

Im übrigen gibt es am Markt auch Konverter, die zwischen den bei Multimode und Singlemode verwendeten Wellenlängen des Laserlichts konvertieren oder umsetzen - diese sind jedoch aufgrund des notwendigen technischen Aufwands mit um die 1000 EUR pro Stück relativ teuer - jedenfalls dann, wenn man Modelle wählt die auch mit 10 oder 40 GBit/s Bandbreite arbeiten.


Stecker-Typen für LWL-Fasern

Die in den letzten Jahren am häufigsten vorkommenden Steckertypen nennen sich ST, SC und LC (Näheres dazu unter https://de.wikipedia.org/wiki/LWL-Steckverbinder). Vor allem wegen der kleineren Bauform sind LC-Stecker dabei, sich für die Verkabelung von LWL-fähigen Geräten in unserer Branche auf weiter Front durchzusetzen. ST- und SC-Stecker kommen meist bei LWL-basierten Netzwerken zum Einsatz.

 

Grundsätzlich sind die am Anfang und am Ende eines LWL-Kabels montierten Stecker unabhängig vom verwendeten Typ der Faser - in der Praxis sind jedoch Multimode-Kabel öfter mit LC-Verbinder, Singlemode-Kabel öfter mit den (älteren und einem Bajonettverschluss ausgestatteten) ST-Steckern versehen. ST-Stecker sind auf den ersten Blick den bei Kupfer-Video-Kabeln verwendeten BNC-Steckern ähnlich.

Der Vorteil von LC (und  SC) Steckern besteht darin, zwei dieser Stecker mittels Plastik-Clip zu einer Duplex-Verbindung miteinander verbinden zu können. Die Bauform stellt automatisch sicher, dass das Kabel beim Anschluss nicht verdreht werden kann.

Meistens liegen daher am Gerät selbst zwei Buchsen für LC-Stecker direkt nebeneinander - die Bauform belegt dabei in etwa die Größe des bei Ethernet-Kabeln verwendete RJ45-Steckers. Genau das ist auch der Grund weshalb die meisten GBICs (siehe nächster Abschnitt) mit LC-Verbindern daherkommen. Da, wie erwähnt, oftmals zwei LWL-Fasern (oder Adern) nebeneinanderliegend zum Einsatz kommen, spricht man zudem oft von LC/LC-Kabeln.

Wie bei Kupferkabeln auch, hat ein LWL-Kabel keine Richtung, es gibt also kein vorne oder hinten - wenn man mal davon absieht, dass es spezielle Adapter-Kabel gibt, die an einem Ende z.B. einen LC-Stecker und am anderen Ende einen ST-Stecker haben (vergleichbar zum Beispiel mit  Stereo-Audio-Kabeln, die an einem Ende einen 3,5mm Klinkenstecker und am anderen Ende zwei Cinch/RCA-Stecker aufweisen).

 

Leider ist es mit vertretbaren Mitteln für Endanwender heutzutage wenig realistisch, irgendeine der o.g. Steckerformen selbst an das LWL-Kabel zu montieren (so wie Ihnen das vielleicht vom „crimpen“ von Netzwerk- oder Videokabeln her bekannt ist). Warum das so ist, kann man unter https://de.wikipedia.org/wiki/LWL-Steckverbinder#Steckermontage nachlesen.

 

Eingangs wurde ja bereits erwähnt, dass die LWL-Kabel selbst heutzutage relativ unempfindlich sind - da könnte man sogar einen groben Knoten reinmachen, ohne dass die Faser selbst in Mitleidenschaft gezogen wird. Die Schwachstelle sind jedoch die LC-Stecker - gibt man auf diese zu viel Zuglast, reissen Sie ab - womit das Ganze Kabel aus vorgenannten Gründen „irreparabel“ beschädigt ist. Das ist bei der Verkabelung per LWL innerhalb von 19“-Schränken natürlich kein Problem - wohl aber in dem Moment, in dem man LWL-Kabel im Ausseneinsatz betreibt; zum Beispiel zum Anschluss von Kameras mit teils mehreren hundert Metern Kabellänge an SDI-Router oder ähnliches. Aber auch dafür gibt es Lösungen - siehe dazu die unten stehenden Abschnitte „Glasfaser-Verbindungstypen“ und „Glasfaser-Kabeltypen“.


Mini-GBICs/SFP-Module vs. Direct Attached

Wenn wir jetzt hier die Aussage machen, dass nahezu keines der per LWL-Kabel zu verbindenden Endgeräte tatsächlich auch optische Anschlussbuchsen - sondern nur elektrische, kupferbasierte - besitzt, dann mag Sie das als Leser verwundern; es entspricht aber der Realität.

 

Typischerweise haben derlei Geräte zwecks Anschluss noch eine rechteckige, ca. 2x1cm grosse, kupferbasierte Buchse, den sogenannten SFP-Cage. Erst dort eingebaute, als SFPs oder Mini-GBICs bekannte Module in der Größe eines kleinen Fingers, wandeln das elektrische Signal tatsächlich in ein optisches um und bieten dann (meist) die o.g. LC/LC-Verbinder. SFPs sind immer auch hot-plugable, können also während des Betriebes ausgetauscht werden. Näheres hierzu findet sich unter https://de.wikipedia.org/wiki/Small_Form-factor_Pluggable

 

Es gibt derzeit drei Typen von SFPs.

  • SFP für Bandbreiten bis 6 GBit/s
  • SFP+ für Bandbreiten bis 10 GBits/s
  • QSFP für Bandbreiten bis 40 GBit/s

 

QSFPs sind vergleichsweise aufwändig und damit teuer, da sie vier SFP+-Module „ersetzen“ und zur Erzielung der Bandbreite von 40 GBit/s vier Laserstrahlen unterschiedlicher Wellenlänge (1271 nm, 1291 nm, 1311 nm und 1331 nm) multiplexen. Dies wird dann auch als CWDM bezeichnet und setzt - siehe oben - selbstverständlich Singlemode-Fasern voraus (siehe dazu auch https://de.wikipedia.org/wiki/Multiplexverfahren#CWDM). CWDM-basierte, gemultiplexte, optische Verbindungen erlauben es 40 GBit/s bis zu 70km ohne Signalverstärkung  zu übertragen.

Am Rande erwähnt sei hier auch der Begriff „Direct Attached“ - er steht für eine kupferbasierte Verkabelung mittels spezieller Kabel, die direkt in die SFP-Cages gesteckt werden. Verbreitung findet diese Anschlussart hauptsächlich innerhalb von 19“-Schränken, wenn Geräte die direkt übereinander montiert sind, via Kabeln verbunden werden müssen und Kabelstrecken von weniger als 1 oder maximal 3 Meter zu überbrücken sind. Das erspart einem dann den Einsatz von SFPs und LWL-Kabeln.

 

ACHTUNG

Wichtig für Sie als  Kunden ist es unter anderem sicherzustellen, dass auf beiden Seiten der Verbindung SFP-Module mit den gleichen Spezifikationen zum Einsatz kommen. Ausserdem ist es wichtig sich zu informieren, ob das jeweils gewünschte, LWL-fähige Gerät ein SFP-Modul im Lieferumfang hat (wie das z.B. bei ATTO der Fall ist) oder ob (wie oft bei Blackmagic Design oder AJA der Fall), der Preis des SFP-Moduls noch zum Kaufpreis hinzugerechnet werden muss.

Bei Preisen jenseits ab 150 € für ein SFP-Modul mit 6 GBit/s bis hin zu mehreren hundert € für ein CWDM-fähiges QSFP-Modul - jeweils pro LC/LC Port - sind hier auf den ersten Blick preiswertere Angebote unterm Strich teurer, als jene, die SFP-Module gleich mitliefern.


Glasfaser-Verbindungstypen

Kommen wir zu einem anderen Problem bzw zur Beschreibung von dessen Lösung: Die Empfindlichkeit der weit verbreiteten LC/LC-Duplex-Stecker für LWL-Fasern, wie eingangs unter  „Vor- und Nachteile optischer Verkabelungen“ erwähnt.

LC/LC-Duplex-Verbindungen sind prima, so lange sie nur selten und vor allem unter einigermaßen sauberen/staubfreien Bedingungen ein- und ausgesteckt werden. Immerhin reduziert jedes Staubkorn auf einem solchen Stecker, jeder fettige Fingerabdruck auf den Linsen eines SFPs die Übertragungsleistung - und das zum Teil ganz erheblich.

Um LWL-Verbindungen auch im Ausseneinsatz (Stichwort „Roadshow-tauglich“) verwenden zu können, haben sich weltweit (!) zwei - „natürlich“ inkompatible - Standards auf dem Markt herausgeschält. Einerseits die von der deutschen Firma Neutrik entwickelten opticalCON-Stecker, andererseits die vom ebenfalls deutschen Hersteller Rosenberg OSI proklamierten Stecker.

Aufgrund der größeren Verbreitung führt picturetools aktuell nur das Kabel mit Rosenberg im normalen Programm. Gern liefern wir Ihnen aber auf Anfrage auch opticalCON-Stecker.

Wenn gleich mechanisch unterschiedlich, so sind beide dieser Steckenormen auf den  ersten Blick XLR-Verbindern aus dem Audio-Bereich ähnlich - siehe die nebenstehenden Bilder. Es gibt Adapterkabel von LC/LC auf die Rosenberger-Stecker, die mechanisch erheblich stabiler und mit einem Verriegelungsschutz ausgestattet sind. Ausgestattet mit Staubschutzklappen befinden sich im inneren der Buchsen Linsen, die das Licht „auffächern“ und im inneren der Stecker wiederum Linsen, die das aufgefächerte Laserlicht wieder in die Glasfaser Bündeln. Das führt dazu dass zumindest kleine Schmutzpartikel die Übertragungsleistung kaum beeinflussen.

Näheres zu der Technik, den verfügbaren Adaptern und Kabeln finden Sie unter dem Stichwort „Fieldcast“ auf unserer Webseite.


Glasfaser-Kabeltypen

Selbstverständlich gehören zu Steckern, die für den Ausseneinsatz von LWL-Verbindungen entwickelt wurden auch entsprechende Kabel. Denn die (meist orangefarbenen und als Patchkabel verwendeten) LC/LC-Duplexfasern sind nicht dafür ausgelegt, dass sie oft ausgerollt oder eingerollt und auf ihnen „herumgetreten“ wird.

 

Dementsprechend gibt es z.B. vom Hersteller Fieldcast mit spezieller Ummantelung versehene LWL-Kabel. Diese halten einem punktuellen Druck von über 300kg stand, können hunderte Male auf Trommeln aufgerollt und auch durch Pfützen und Matsch verlegt werden, ohne dass sie Schaden nehmen.

Derartige, an beiden Enden mit Rosenberg-Steckverbindern ausgestattete Kabel und sind Lose oder auf Kabeltrommeln in verschiedenen Längen bis zu mehreren Hundert Metern zu haben. Einige Kabeltypen können neben dem LWL-Signal über zusätzliche Kupferlitzen auch Strom übertragen (z.B. zur Versorgung einer Kamera). Ausserdem sind die Kabel einfach kaskadier- also durch Zusammenstecken verlängerbar.

Auch hierzu finden Sie weitere Infos unter dem Stichwort „Fieldcast“ auf unserer Webseite.


Bildnachweise:
Für Singlemode/Multimode-Strahlengang: Von Kirnehkrib - Eigenes Werk, CC BY-SA 3.0
Für LC-Stecker und SFP-Module: Von Adamantios - Eigenes Werk, CC BY-SA 3.0  

Links zu weiteren Informationen im Internet:

 

Fragen zum Produkt?

Senden Sie uns eine Nachricht:

Weitere Produkte von Blackmagic Design:

Blackmagic ATEM Camera Control Panel

Das Camera Control Panel vereint vier Kamerasteuerungs-Einheiten in einem Bedienpult. Jeder Einheit ist dabei ein LCD-Display mit Multifunktionstasten und Reglern zugewiesen. [mehr...]

Blackmagic ATEM Konverter

Blackmagic Design's ATEM Konverter erlauben die Anbindung von Kameras an Mischer und Recorder über lange Kabelstrecken hinweg - inklusive Video-Rückkanal und Sprachverbindung [mehr...]

Blackmagic ATEM Videomischer

ATEM Bildmischer sind innovative Broadcast- Produktionsmischer. Sie besitzen zahlreiche Ein- und Ausgänge und ermöglichen neue Funktionen durch Softwareupgrades. [mehr...]

Blackmagic Audio Monitor

Audio Monitor bietet qualitativ hochwertiges Rack-Audio-Monitoring für SDI, AES/EBU und analogen Audioquellen. [mehr...]

Blackmagic Cintel Film Scanner und Komplettsystem

Echtzeitfilmscanner, der 35mm- und 16mm-Film bei bis zu 30 Frames pro Sekunde über Thunderbolt 2 bzw. 3 in Ultra-HD/HDR-aufgelöstes Video digitalisiert. Mit DaVinci Resolve Studio Software. [mehr...]

Blackmagic DaVinci Resolve Advanced Panel

Das DaVinci Advanced Panel ist mit 3 ergonomisch verbundenen Konsolen und ausziehbarer Tastatur ausgestattet und gibt Ihnen die komplette Kontrolle bei jeder Colorgrading-Session. [mehr...]

Blackmagic DaVinci Resolve Komplettsystem

Von uns getestete und empfohlene direkt einsatzbereite Zusammenstellung aus HP Z840 Workstation, Blackmagic Decklink 4K Extreme, GeForce GTX 1080 Ti, DreamColor Monitor und DaVinci Resolve Software. [mehr...]

Blackmagic DaVinci Resolve Micro Panel

Das DaVinci Resolve Micro Panel ist ein kleines, portables Grading-Bedienpult mit drei hochauflösenden, gewichteten Trackballs, 12 Steuerreglern für die wichtigsten Tools und vielem mehr. [mehr...]

Blackmagic DaVinci Resolve Mini Panel

Das DaVinci Resolve Mini Panel ist ein kompaktes professionelles Bedienpult mit drei ultrapräzisen, gewichteten Trackballs und 12 hochauflösenden Reglern, 2 Bildschirmen und vielem mehr. [mehr...]

Blackmagic DaVinci Resolve Studio

DaVinci Resolve die Lösung für Import, Color Grading, Tracking, Editing und Conforming. Bis zu 8K Stereo und GPU beschleunigt. Für Windows, Mac OS und Linux. [mehr...]

Blackmagic DeckLink Familie

DeckLink PCIe Video Karten mit SDI, HDMI, analog und optical Fiber in Ein- oder Mehrkanal Ausführung für Broadcast, Streaming und Postproduktion. [mehr...]

Blackmagic Duplicator 4K

Der Blackmagic Design Duplicator 4K erlaubt die Aufzeichnung eines SD/HD/UltraHD-Videosignals auf bis zu 25 SD-Karten gleichzeitig wobei die fortschrittliche H.265-Kodierung zum Einsatz kommt. [mehr...]

Blackmagic DVI Extender

Verbannen Sie laute Rechner aus Arbeitsräumen. Routen Sie Ihre Computersignale über SDI und Kreuzschiene. [mehr...]

Blackmagic Fiber Converters

Die Fiber Converter ermöglichen das Senden von Kamerasignalen über bis zu 2km. Audio, Video, Talkback & Tally sowie Strom können so über ein einziges SMPTE-Hybridkabel übertragen werden. [mehr...]

Blackmagic Fusion Studio

Fusion bietet Compositing Funktionen wie 3D-Arbeitsraum, Node-basierten Workflow, Keying, Tracking sowie Retusche und Painting von Bildern, Import und Rendering von 3D-Modellen und viele mehr. [mehr...]

Blackmagic H.264 Pro Recorder

Der H.264 Pro Recorder unterstützt Aufnahmen in allen gängigen Videoformaten, sodass Sie direkt von professionellen Broadcast-MAZen aus enkodieren können. [mehr...]

Blackmagic HyperDeck Familie

Die Blackmagic HyperDeck Familie sind ein mobiler SSD-Recorder und 19" SSD-MAZen mit zwei Einschüben für unbegrenzte Aufnahmezeit und HDMI/SDI Anschlüssen. [mehr...]

Blackmagic Intensity Pro und Shuttle

Mit Blackmagic Intensity Pro und Shuttle können Sie Video in bester Qualität, kostengünstig, von HDMI und analog ein- und ausspielen. [mehr...]

Blackmagic Micro Cinema Camera

Die weltkleinste Digitalfilmkamera mit Super-16mm-Sensor und 13 Blendenstufen Dynamikumfang für die Fernsteuerung konzipiert! [mehr...]

Blackmagic Micro Converter Signal Konverter

Die mit abstand kleinsten - Mikro - Konverter aus der BMD-Produktlinie wandeln SDI nach HDMI (oder umgekehrt) und lassen sich über einen normalen USB-Anschluss mit Strom versorgen. [mehr...]

Blackmagic Micro Studio Camera

Die weltkleinste HD- und Ultra-HD-Live-Studiokamera, die via SDI ferngesteuert werden kann. [mehr...]

Blackmagic Minikonverter Multiplex & Distribution

Mini Converter zum Verteilen oder Zusammenführen von SDI Signalen. Mit Sync und Audio Unterstützung. [mehr...]

Blackmagic Minikonverter Signal Konverter

Mini Converter von Blackmagic sind kompakte Signal-Umwandler für SDI, HDMI, analog und Audio. Wahlweise mit Akku oder als besonders robuste Variante. [mehr...]

Blackmagic Minikonverter Sync Generator

Der Sync Generator von Blackmagic stellt einen Studiotakt an 6 Anschlüssen bereit. [mehr...]

Blackmagic Minikonverter UpDownCross

Der Minikonverter UpDownCross konvertiert SDI Signale in Auflösung und Framerate sowohl als hoch- wie auch runter-Konvertierung. [mehr...]

Blackmagic MultiDock

Mit dieser superschnellen Thunderbolt-2-Docking-Station können Sie direkt von Ihren Festplatten aus arbeiten. Bis zu 4 Stück 2,5 Zoll SSDs/Festplatten können gleichzeitig eingesteckt werden. [mehr...]

Blackmagic MultiView Familie

Der MultiView-Linie von Blackmagic Design erlaubt die gleichzeitige Darstellung mehrerer, unterschiedlicher Videosignale auf einem einzigen Monitor. [mehr...]

Blackmagic OpenGear Konverter

OpenGear Konverter von Blackmagic sind standardisierte Signal-Wandler zum Einbau in Racks und bieten Ihnen eine große Spanne möglicher Konvertierungen. [mehr...]

Blackmagic Pocket Cinema Camera

Die Digital-4K-Filmkamera in Taschengröße mit 13 Blendenstufen, vollem 4/3-HDR-Sensor, Dual Grain ISO von 25.600, MFT-Linsen sowie ProRes- und RAW-Aufnahme direkt auf USB-C-Speicher. [mehr...]

Blackmagic Smart Videohub

Die Smart Videohub sind Multiformat-Kreuzschienen, die das Rückgrat ganzer Produktionen/Unternehmen darstellen können. Wir haben Grundlagen und Anwendungsbeispiele für Sie zusammengestellt. [mehr...]

Blackmagic SmartView und SmartScope

SmartView und SmartScope Monitore für SDI-Monitoring in hoher Qualität, extrem dünn und leicht und daher auch für den mobilen Einsatz ideal. [mehr...]

Blackmagic Studio Camera

Broadcast-Kamera mit 10-Zoll-Sucher, MFT-Objektivanschluss, Talkback, Tally, Phantom-gespeiste Mikrofonanschlüsse und eingebaute Glasfaser- und SDI-Anschlüsse zur Kopplung an Ihren Mischer. [mehr...]

Blackmagic Teranex Konverter

Teranex 2D- und 3D-Prozessoren: Die weltweit fortschrittlichsten Standard-Konverter mit Up-, Down- und Cross-Normwandlung, Noise Reduction und vielen anderen Funktionen. [mehr...]

Blackmagic Teranex Minikonverter

Teranex Mini Konverter sind extrem hochwertige Signalkonverter. Kompatibel mit 12G Signalen und in verschiedenen Varianten lieferbar. [mehr...]

Blackmagic Ultimatte

Der Ultimatte 12 Compositor ist ein Compositing-Echtzeitprozessor mit 12G-SDI für das Live-Keying von Broadcastgrafiken der nächsten Generation in HD und Ultra HD. [mehr...]

Blackmagic UltraScope

Präzises Waveform Monitoring 3G SDI und Optical Fiber. Entwickelt für Cutter & Coloristen und mit einer technischen Exaktheit, die Messtechniker überzeugen wird. [mehr...]

Blackmagic UltraStudio Familie

Blackmagic UltraStudio sind externe USB3 und Thunderbolt Video Aufnahme- und Wiedergabelösungen. Kompatibel mit allen gängigen Programmen. [mehr...]

Blackmagic URSA Broadcast

Die URSA Broadcast Kamera ist eine professionelle Ultra-HD-Broadcastkamera unter dem Preis einer DSLR. Sie eignet sich für Innen- und Außeneinsätze. [mehr...]

Blackmagic URSA Mini

Die Blackmagic URSA Mini ist speziell für den Einsatz im Rahmen von Spielfilmen, TV-Sendungen, Werbespots, Indies, Dokumentationen, Musikvideos und vielem mehr konzipiert. [mehr...]

Blackmagic URSA Mini Pro

Die URSA Mini Pro 4.6K ist eine kompakte Digitalfilmkamera mit eingebauten ND-Filtern, Wechselmount, dualen Rekorderpaaren für CFast- und UHS-II SD-Karten sowie Broadcastfeatures und -bedienelementen. [mehr...]

Blackmagic URSA Viewfinder Familie

Die Blackmagic URSA Viewfinder sind hochauflösende Sucher für Kameras der URSA Produktreihe mit HD-(OLED)-Display und echter Glasoptik für perfekte Fokussierung. [mehr...]

Blackmagic Video Assist Familie

Die Blackmagic Design Video Assist sind mobile SD/HD/4k Broadcast-Video-Recorder mit integriertem 5” bzw. 7” Bildschirm. Die Aufnahme erfolgt auf SD Karten in Apple ProRes oder DNxHD. [mehr...]

Blackmagic Web Presenter

Der Web Presenter tarnt SDI/HDMI-Quellen als USB-Webcam. Da es sich aber um professionelles Videomaterial handelt, ist die Qualität viel besser! Für hochwertiges Streaming mit geringen Datenmengen. [mehr...]